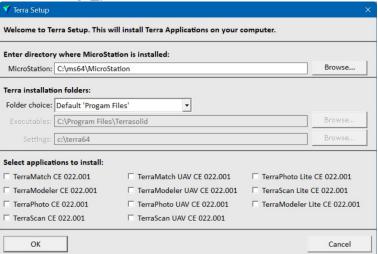


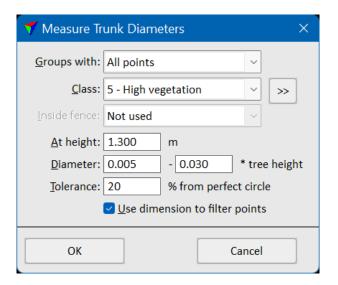
TerraScan New Features

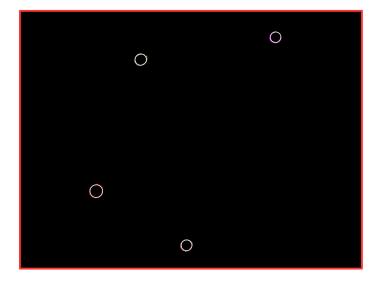

Arttu Soininen 15.03.2022

Setup: Executable Files into C:\Program Files

- Setup Folder choice has options:
 - Default c:\terra64 install all files to c:\terra64
 - Default 'Program Files' executables into c:\Program Files\Terrasolid, rest into c:\terra64
 - Freely selectable folders you choose folder for executables and folder for settings files
- When executables are in separate folder, applications find settings files using:
 - 1. Environment variables if defined
 - 2. Using c:\Program Files\Terrasolid\settings_path.txt if no environment variables

View / Column Titles

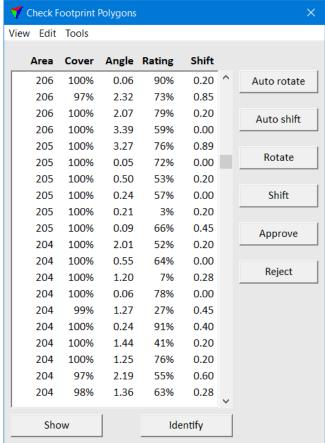

- Main Window can display column titles for the list of points
- View / Column titles menu item toggles display on or off


tampere000001.fbi - 14 774 653 points									
<u>F</u> ile	<u>O</u> utput	Point View Classify G	oup <u>T</u> ools <u>L</u> ine <u>W</u> izard						
Cl	ass	Easting	Northing	Elevation	Intensity	Distance			
	5	325786.570	6819173.810	+114.830	62	17.901	^		
	5	325786.270	6819173.800	+114.450	55	17.526			
	5	325786.110	6819173.780	+114.810	32	17.890			
	5	325783.760	6819173.860	+102.060	9	5.097			
	8	325782.800	6819173.890	+96.900	12	0.000			
	5	325785.110	6819173.800	+110.610	12	13.639			
	5	325784.810	6819173.810	+108.990	18	12.005			
	5	325783.430	6819173.850	+101.520	23	4.577			
	5	325783.190	6819173.860	+100.260	15	3.334			
	5	325784.930	6819173.780	+110.860	35	13.881			
	5	325784.640	6819173.790	+109.290	14	12.306			
	5	325784.670	6819173.770	+110.680	15	13.696	~		
	Show lo	ocation Modified: D				<u>I</u> dentify			

Measure Trunk Diameters

- Measure Trunk Diameters tool finds trunk diameters at given height from ground
- Requires grouping is done and distance values have been computed (height from ground)
- Draws result as circles into the CAD file
- You can check the fitted circles and modify if necessary
- Write group info can use circles on a given level to write trunk diameters

Write Group Info


- Writes a list of groups as a text file
- Good for creating a list of objects such as a list of trees
- File formats / User group formats category in Scan Settings lets you define you own file format
- Columns can be selected from:
 - Group id
 - Point count
 - Average easting
 - Average northing
 - Average z
 - Ground z at average xy
 - Trunk easting
 - Trunk northing
 - Trunk ground z
 - Trunk diameter
 - Canopy width

- Biggest distance
- Smallest distance
- Length
- Width
- Height

Check Footprint Polygons Improvements

- Can check for overlapping polygons will not apply a shift/rotation which would result in overlapping footprint polygons
- Save List As menu command for saving list into a text file

Various Improvements

- Place Tower String and Place Railroad String tools have Undo last button will undo last vertex added
- Classify Using Brush displays points being classified dynamically
- Multiple source classes in Classify / Low points
- Draw line boundaries in Define Project renamed Draw cloud boundaries can now draw boundary for whole project point cloud
- Sort points keeps active block and neighbouring block points separate OK to run and save active block points

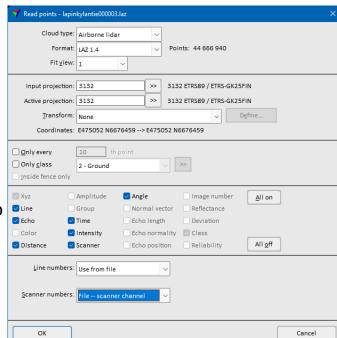
Read Collection / Import Collection

- Read collection menu command has replaced Read directory
- Import collection menu command has replaced Import directory
- These allow collection of multiple files from multiple folders

LAZ 1.4 Support

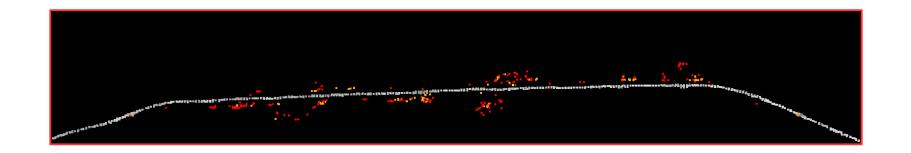
TerraScan can read, write and use LAZ 1.4 as project storage format

Additional Attibutes in LAS & LAZ

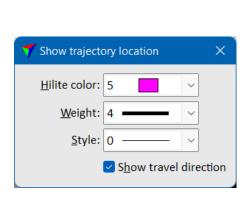


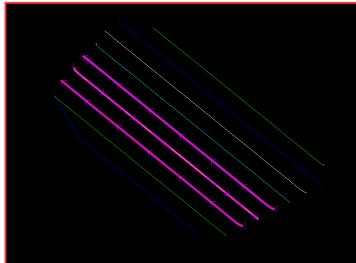
- In addition to standard LAS point records, TerraScan can read and write following extra attributes:
 - Amplitude 2 bytes
 - Reflectance 2bytes
 - Pulse width/echo length 2 bytes
 - Deviation 2 bytes
 - Reliability/confidence 1 byte
 - Distance 4 bytes
 - Group 4 bytes
 - Normal vector 4 bytes

LAS/LAZ1.4 Scanner Channel Support


- LAS 1.4 file format has 2 bit field **Scanner Channel** allowing scanner numbers 0-3
- TerraScan primarily reads and writes scanner number into 8 bit User
 Data field (0-255)
- When you read or import LAS 1.4 or LAZ 1.4:
 - Selecting File scanner byte in Scanner numbers reads from 8 bit field
 - Selecting File scanner channel reads from 2 bit field
- When writing a file, TerraScan always writes scanner information into User Data field and writes last two bits of scanner information into Scanner Channel field
- When opening a block, TerraScan always reads scanner information from User Data field

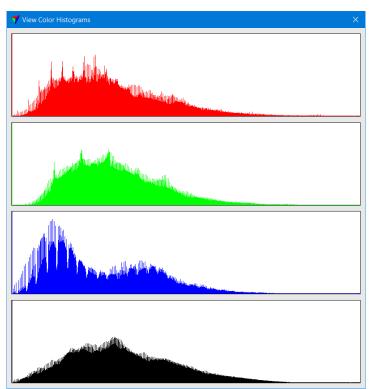
Agisoft Confidence Values


- Software can read Confidence values written by Agisoft from LAS or LAZ files
- Confidence tells from how many images the point has been generated from
- TerraScan calls this attribute Reliability
- Classify / By reliability can classify points based on reliability value
- Cut low reliability will classify/remove low reliability points which have better reliability neighbours
- Points can be displayed colored by reliability
- Classify / Surface points can use reliability as weight factor
- Smoothen points can use reliability as weight factor when smoothing xyz

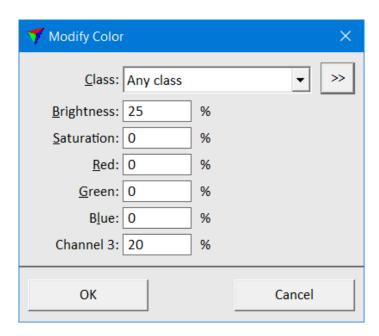


Manage Trajectories Improvements

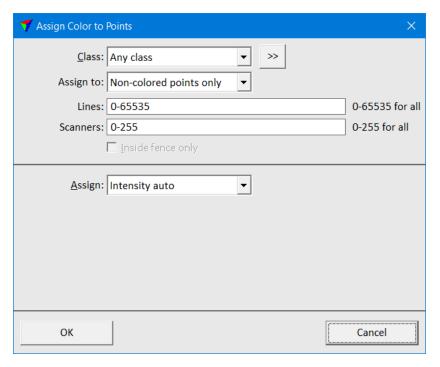
- Change in trajectory file naming from second to 0.01 second resolution
 - Splitting trajectories to shorter than 1.0 second intervals could produce duplicate file names
- Show location lets user select hilite color, weight and style
- Show location hilites multiple selected trajectories
- Support for Ctrl key in Identify for identifying multiple trajectories



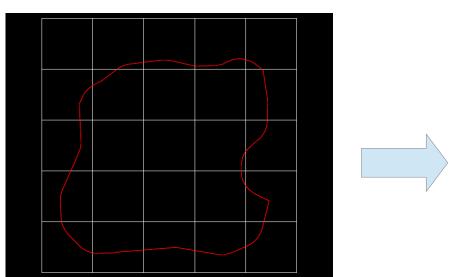
View / Color Histograms

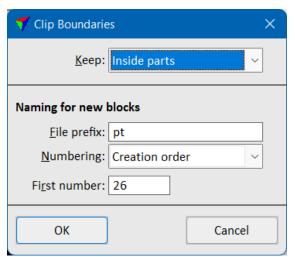

- Menu command for viewing histograms of point color information
- Displays 3-10 channels

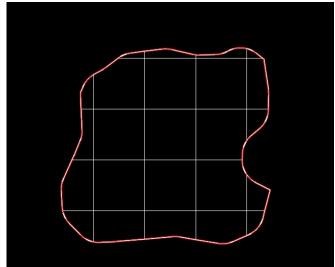
Tools / Modify Color


- Menu command for modifying color values of loaded points
- Preview of result clicking Cancel will restore original color values
- Supports 3-10 channels

Assign Color Improvements

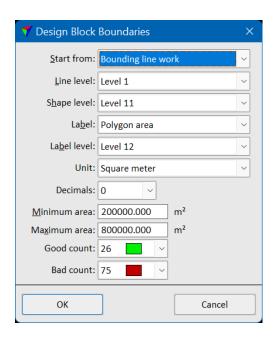


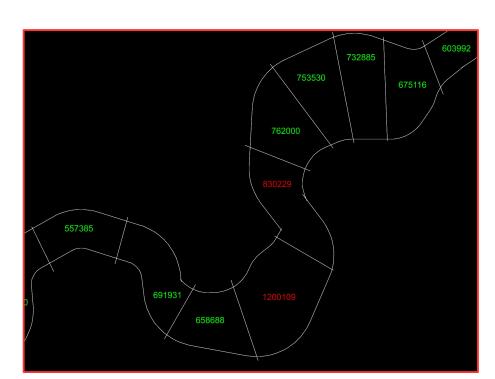

- Assign to setting with Non-colored points only this will assign color to completely black points only
- Can assign Intensity auto coloring



Clip boundaries in Define Project

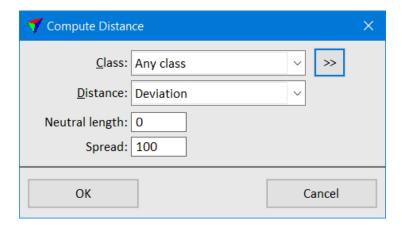
- Menu command for clipping project boundaries using polygons
- You can create grid block boundaries first and then clip those using selected polygons
- Merge small blocks can merge small blocks with larger neighbours based on area
- This can be run before importing points into a project



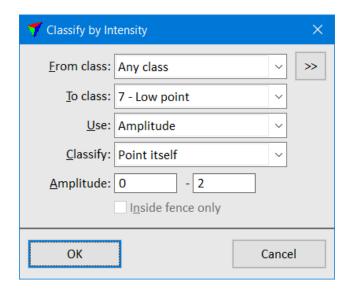


Design Block Boundaries & Block Area

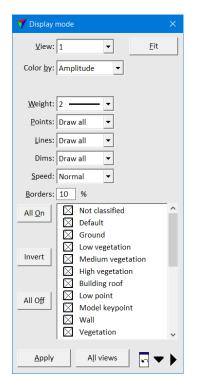
- Design Block Boundaries can run based on block area instead of point count
- You can design block boundaries without reading every n:th point if point density is fairly uniform



Compute distance & Deviation


- Compute distance can translate Deviation values into distance values
- Ground classification can then use distance values derived from deviation as a probability for point being ground

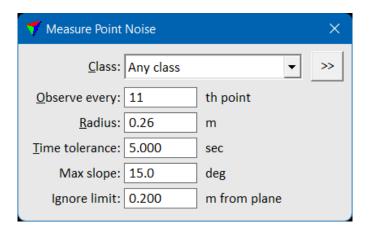
Classify / By intensity Can Use Amplitude or Reflectance


Classify / By intensity can now classify points based on amplitude, intensity or reflectance values

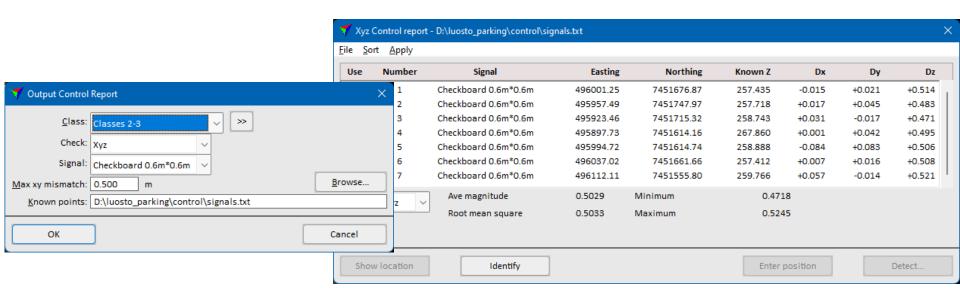
Amplitude Coloring

- Amplitude option in Color by will display points colored by amplitude
- Color scheme is automatically fitted (similar to Auto intensity)

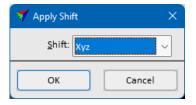
Deduce Trajectories


- Manage Trajectories dialog has Tools / Deduce trajectories menu command which can create fake trajectory information from time stamped point cloud
- You can use this as last resort if you have laser point cloud with time stamps but no access to trajectory information
- Makes it possible to run tools which require trajectory information
- Runs using loaded points read every n:th point if you have a large project

Measure Point Noise


- Reports one numerical value describing point-to-point noise level in the point cloud
- Reported value is average difference from a point to a plane fitted to all the points within a given 3D search radius from the point
- OK to run using Any class
- Alternatively, you may classify hard surface areas and get a value for clean hard surfaces

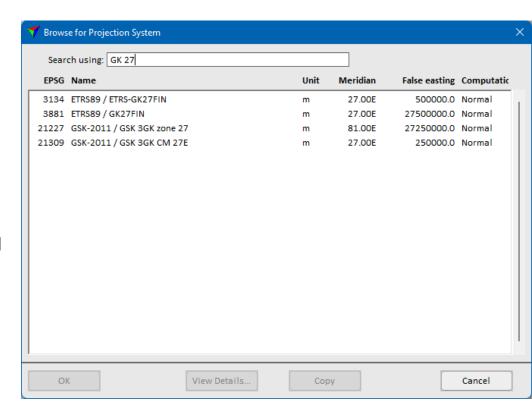
Output Control Report & Signal Markers


- Output Control Report can find signal markers using laser intensity and report xyz mismatches
- You can define signal markers using Scan Settings and Signal Markers category
 - If you click Add without selected elements, you create a checkboard pattern signal marker definition
 - If you select elements first, you create free shape signal marker definition (largest polygon is dark background, smaller polygon(s) are bright intensity)

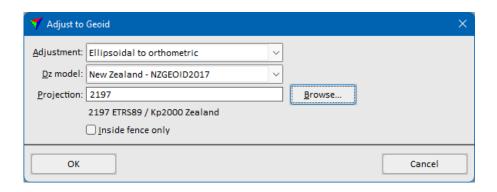


Output Control Report & Apply

- Apply / Shift menu command will apply average mismatch Xyz, Xy or Z shift to loaded points
- Apply / Rubbersheet correction will apply rubbersheet Xyz, Xy or Z correction to loaded points



World Coordinate Systems


- TerraScan supports a comprehensive list of world projection systems
- You can add user systems in Scan Settings
- It is best to specify active projection system whenever reading or importing points
 - You can enter EPSG code of projection system
 - Alternatively, you can enter some key words from the name
- If projection system is known, TerraScan will write projection system info into LAS, LAZ and FBI files

Adjust to Geoid & Geoid Models

- Can convert between ellipsoidal and orthometric elevation support a number of geoid model sources
- Geoid models come with multiple application installation packages
- Geoid models go into \terra64\geoid folder
- TerraScan for MicroStation CE installation package does not contain geoid models but you can start geoid model download directly from the dialog

New Drone Project Wizard

Terra solid

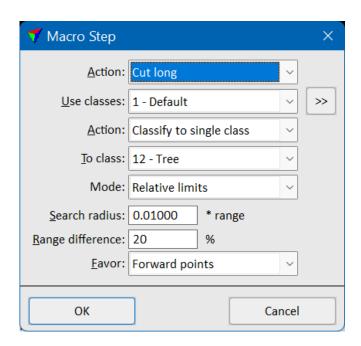
Wizard for importing DJI L1 laser point cloud

▼ New Drone Project		×
Scanner system: DJI L1 ▼	E 0	
Project name: Luosto	✓ <u>C</u> reate defaul	t point classes
Laser input: D:\luosto_parking\cloud797835e5.las	16.08.2021	Add
		Remove
Input system: 4326 >> 4326 WGS84 longitude & latitude	Assign color t	o black points
Input elevations: Ellipsoidal	✓ <u>S</u> ort points fo	or speed
Trajectory input: D:\luosto_parking\DJI_20210816201607_0001_Zenmuse-L1-mission_sbo	et.out 16.08.2021	Add
		Remove
Input system: 4326 SS84 longitude & latitude		
Input elevations: Ellipsoidal		
Target system: 3134 >>> 3134 ETRS89 / ETRS-GK27FIN	E26.91 N67	.15
Target elevations: Orthometric ▼	-> E496058 N7	7451460
Geoid model: Finland - FIN2005 ▼		
Storage folder: D:\luosto_parking\		Browse
OK		Cancel

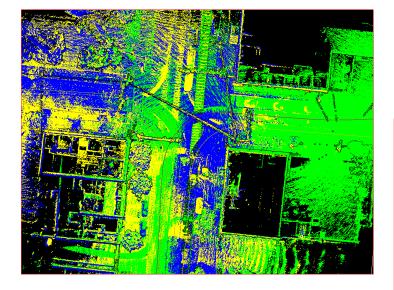
New Drone Project Wizard

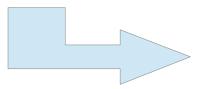
- Creates design file if not open already
- Fixes coordinate setup to match incoming points
- Reads laser points into memory applying coordinate transformation
- (Optional) Sort points by xy location for speed
- Classifies all points to class 1 Default
- (Optional) Adjusts elevations from ellipsoidal to orthometric
- (Optional) Creates default list of point classes
- Fixes scan direction bit
- Creates folder and reads trajectory solutions applying coordinate transformations
- (Optional) Adjusts trajectory elevations from ellipsoidal to orthometric
- Deduces line numbers for laser points

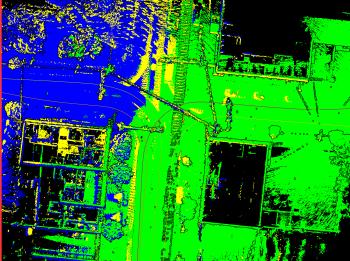
Process Drone Data Wizard


- Helps in running typical processing steps for UAV lidar data
- You can run steps as one batch process
- Or you can run some steps at a time and perform operations with other tools in the software

Cut Long & Relative Limits

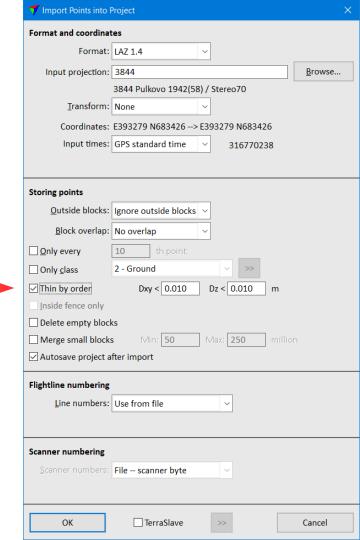



- Cut long has Relative limits mode
- Search radius depends on range from scanner this takes point density into account

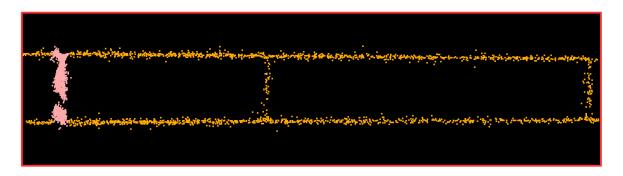


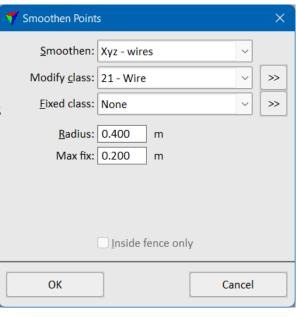
Cut Overlap & Favor First or Last

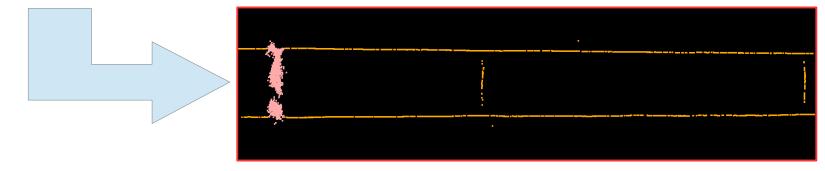
- **Cut overlap** by range has options for favoring first or last passes
- Makes it easy to remove duplicate mobile passes in a city



Macro Step	
Action:	Cut overlap ~
Coverage:	Classes Any >>
Action:	Delete
'	
Cut by quality	
<u>H</u> ole size:	10.0 m
Cut single scan	ner edges
<u>K</u> eep:	0 degree corridor
Cut by offset	
	Perpendicular to flight
<u>K</u> eep:	25 degree corridor
Cut by scan an	gle
	<= 10 deg
✓ Cut by range	
Use:	3D range - favor first V
Search radius:	0.100 m + 0.0050 * range
Add to range:	8.000 m
Cut by density	
Search radius:	0.500 m
Keep dasses:	6,22
Scanner groups:	

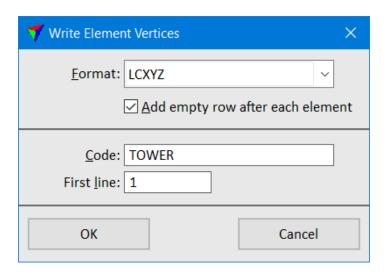

Import into Project & Thin by Order


- Import into project has Thin by order option
- This will automatically thin incoming data before writing into block files
- Reduces data volume before creating new files
- Useful with mobile or static scanner data where data density is very high close to the scanner



Smoothing Wires

- Smoothen points tool has option Xyz wires for smoothing linear features
- Max fix specifies maximum allowed movement for a point
- Points more than Max fix away from locally fitted line stay unmodified



Output / Write Element Vertices

- Output / Write element vertices writes vertices of selected vector elements to a text file
- Tool supports linear elements, ellipses and cells


```
1 TOWER 395266.280 683871.852 0.000
1 TOWER 395338.908 683989.563 0.000
 TOWER 395433,017 684034,600 0,000
 TOWER 395478.026 684118.532 0.000
 TOWER 395525.080 684190.182 0.000
1 TOWER 395531.218 684196.323 0.000
1 TOWER 395591.571 684245.454 0.000
 TOWER 395685,680 684309,939 0,000
1 TOWER 395701.024 684318.128 0.000
1 TOWER 395739.895 684340.646 0.000
 TOWER 395306.174 683837.051 0.000
 TOWER 395356,298 683939,408 0,000
2 TOWER 395362.435 683944.526 0.000
 TOWER 395442.223 683997.751 0.000
 TOWER 395543.493 684153.333 0.000
2 TOWER 395637.602 684239.313 0.000
2 TOWER 395754.216 684281.279 0.000
```